Computer Science – Java

Primitive Types

How to Store Data

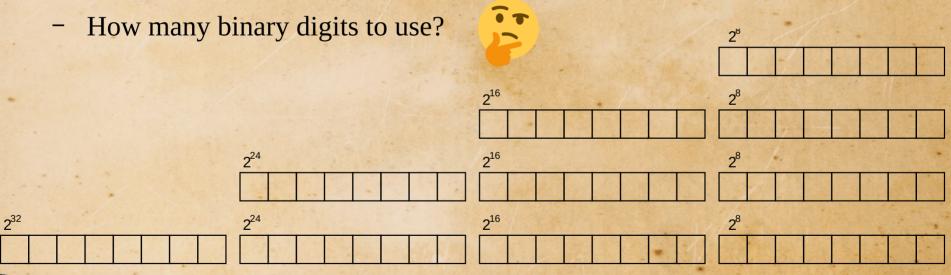
Lecture Contents

- How to store different data
 - Computers only store zeros and ones!
- Java Primitive Types

- Whole numbers
 - Just store as a binary string...

$$75-64 = 11$$
 $11-8 = 3$
 $3-2 = 1$
 $1-1 = 0$

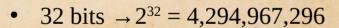
	E SALES OF SALES	The state of the state of		2 ³	A STATE OF THE PARTY OF THE PAR	1	
0	1	0	0	1	0	1	1
128	- Charles	No Care	1000	8	1/1/		


- Whole numbers
 - Just store as a binary string...
 - How many binary digits to use?

$$75-64 = 11$$
 $11-8 = 3$
 $3-2 = 1$
 $1-1 = 0$

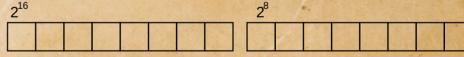
		Take the said		2 ³			
0	1	0	0	1	0	1	1
128	2 Charles		1000	8	Mal	1000	

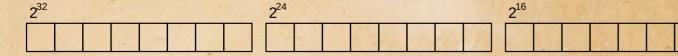
- Whole numbers
 - Just store as a binary string...

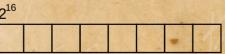

Whole numbers

- Just store as a binary string...
- How many binary digits to use?

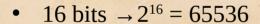
• 8 bits
$$\rightarrow 2^8 = 256$$


• 16 bits
$$\rightarrow 2^{16} = 65536$$



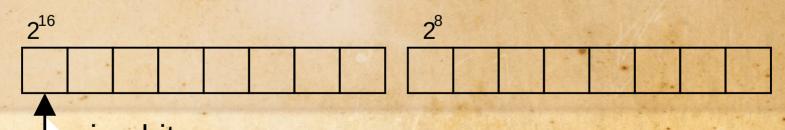


216					
11	1	W. Carlo		12/19	



- Whole numbers
 - Just store as a binary string...
 - How many binary digits to use?

• 32 bits
$$\rightarrow 2^{32} = 4,294,967,296$$


- ...but what about negative numbers?

Whole numbers

- Just store as a binary string...
- How many binary digits to use?

- 8 bits $\rightarrow 2^8 = 256$
- 16 bits $\rightarrow 2^{16} = 65536$
- 32 bits $\rightarrow 2^{32} = 4,294,967,296$
- ...but what about negative numbers?

Java integers

	bits	range
byte	8	-128 to +127
short	16	-32768 to +32767
int	32	-2,147,483,648 to +2,147,483,647
long	64	-9,223,372,036,854,775,808 to
long	04	9,223,372,036,854,775,807

In most cases, just use int

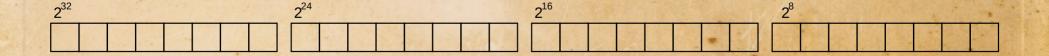
	bits	range
byte	8	-128 to +127
short	16	-32768 to +32767
int	32	-2,147,483,648 to +2,147,483,647
long	64	-9,223,372,036,854,775,808 to
long	04	9,223,372,036,854,775,807

In Java, Integer.MIN_VALUE = -2,147,483,648
 and Integer.MAX_VALUE = +2,147,483,647
 (no need to type these numbers!)

REMEMBER:

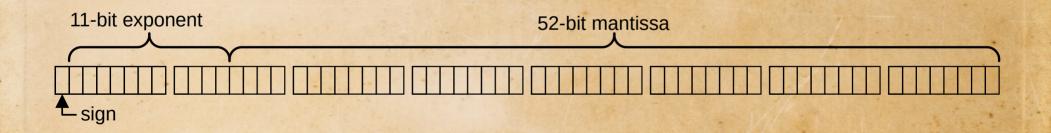
Unless you have a particular need, to keep thing simple, when storing an *integer*, just use the primitive type:

int



What about numbers with decimals?

$$\pi = 3.1415926535897932384626433...$$


- What about huge numbers?
 - Avogadro's Number:

$$N_A = 6.02214076 \times 10^{23}$$

- What about huge numbers?
 - Scientific notation

$$\pm$$
 mantissa \times 2^{exponent}

Java floating point numbers

	sign	exponent	mantissa
float	1	8	23
double	1	11	52

- Specification: *IEEE 754*

REMEMBER:

Unless you have a particular need, to keep thing simple, to store an *real number*, use the primitive type:

double

How to store text?

- How might we store: "Hello World!"
 - Character by character
 - Previously **ASCII** American Standard Code for Information Interchange (1963)
 - Java uses Unicode
 - 16 bits, so 65536 different characters
 - Lower characters match with ASCII

ASCII Character Codes in Hexadecimal

ASCII Character Set (0x20-0x7F)

box	obo*		box	obo:
hex	char		hex	char
20	space		30	0
21	1	N	31	1
22	"		32	2
23	#	7.4	33	3
24	\$		34	4
25	%		35	5
26	&		36	6
27			37	7
28	(38	8
29)		39	9
2A	*		3A	
2B	+	N. A.	3B	
2C	,	N-100	3C	<
2D	-		3D	=
2E			3E	>
2F	1		3F	?

Snara	cter S	et	(UX2U	- U
hex	char		hex	C
40	@		50	,
41	Α		51	
42	В		52	
43	С	1	53	
44	D		54	100
45	E		55	
46	F		56	
47	G		57	
48	Н		58	
49	I		59	15%
4A	J		5A	
4B	K		5B	
4C	L		5C	
4D	М		5D	
4E	N		5E	
4F	0	1	5F	

	,			
ex	char		hex	char
50	Р		60	
51	Q		61	a
52	Q R		62	b
53	S		63	С
54	Ŧ		64	d
55	C		65	е
56	V		66	f
57	W		67	g
58	X		68	h
59	Υ		69	i
5A	Z	10000	6A	j,//
5B	[6B	k
5C	1		6C	1
5D			6D	m
δE	٨		6E	n
5F			6F	0

char
р
q
r
S
t
u
V
W
Х
У
Z
{
}
~
delete

USASCII code chart

						_								
	В , В	5 -				-	000	°0 -	0 - 0	0 1	100	- 0	1 10	1 1
	0,,,		b 3	ps	b i	Row	0		2	3	4	5	6	7
	``	0	0	0	0	0	NUL .	DLE	SP	0	0	Р	``	Р
		0	0	0	1		SOH	DC1	!	1	Α.	Q	0	q
		0	0	1	0	2	STX	DC 2	- "	2	В	R	Ь	r
		0	0	1	1	3	ETX	DC3	#	3	C	S	С	\$
		0	-	0	0	4	EOT	DC4	•	4	D	T	đ	1
		0	_	0	1	5	ENQ	NAK	%	5	Ε	ט	е	U
		0	1	1	0	6	ACK	SYN	8	6	F	>	f	٧
		0	_	1		7	BEL	ETB	•	7	G	₩	g	w
		-	0	0	0	8	BS	CAN	(8	н	×	h	×
		-	0	0	1	9	нТ	EM)	9	1	Y	i	у
		_	0	1	0	10	LF	SUB	*	:	J	Z	j	Z
		1	0	1	1	11	VT	ESC	+	;	K	C	k .	{
		1	1	0	0	12	FF	FS	,	<	L	\	l	1
		1		0		13	CR	GS	-	#	М	כ	m	}
J		1	1	1	0	14	so	RS	•	>	2	^	n	>
		T	1	T	II	15	SI	US	1	?	0		0	DEL

Java Primitive Types

- Integers
 - byte (1)
 - short (2)
 - int (4)
 - long (8)
- Real
 - float (4)
 - double (8)

- True/False
 - boolean (1 bit?)
- Letters
 - char (2)

AP Java Subset Primitive Types

- Integers
 - byte (1)
 - short (2)
 - int (4)
 - long (8)
- Real
 - float (4)
 - **double** (8)

- True/False
 - **boolean** (1 bit?)
- Letters
 - **char** (2)

Computer Science – Java

Primitive Types

How to Store Data

